【日常】multiprocessing使用与多进程爬虫队列通信示例

序言

总结了一下multiprocessing库的使用。之前发现西刺代理挂掉之后很多以前写好的多进程的爬虫模块都用不了了,最近yy跟我说发现原来西刺是换了张皮改名叫西拉代理,界面改善了不少,还加了些教程充实内容,实乃曲线救国。

之前写这块多进程爬虫时其实写得不是很好,思路是给每个进程分配大致同等数量的一批IP,然后每个进程各自独立地去用被分配地IP去跑,如果一些进程被分配的IP质量很差,很快这个进程就会发现没有一个IP能用,然后就快速进入僵尸状态,到最后可能只有一两个进程还活着,效率其实很差。而且出于保护像西拉代理这样为民造福的网点,也不太好意思频繁去访问它(其实这种网点的访问频率是非常高的,每天肯定都有一大批爬虫在抓它的IP地址,很容易挤不进去的)。

所以改良版的多进程选择使用一个队列(本文第3节 Queue模块),每个进程从队列中取IP,当队列的长度低于某个阈值时将调用XiLaProxy模块(XiLaProxy模块代码在第7节 一个完整的多进程爬虫项目示例,这是一个获取西拉代理上IP的类)调取一批IP填充到队列中。

测试下来效率会非常高,理论上所有进程都可以处于一个非常健康的状态,第7节依然以刷访问量为一个示例(不过最近发现CSDN似乎已经不能通过刷访问量提高积分值了,即便通过代理IP也无法使积分提高,是不是规则里10000阅读以下,100阅读=1积分已经失效了?)。

这里提一个多进程中常常会出现的问题:

  • 首先jupyter notebook里是无法进行多进程代码运行的;
  • 其次普通脚本中创建进程,以及start和join的部分一定要写在main函数中(即写在if __name__ == '__main__'里);否则是会报错的,至少如果是使用进程池是一定会出错的;
  • 然后就是如果在类中编写多进程,则多进程的目标函数是不能作为类函数的子函数的,举个简单的例子:
    from multiprocessing import Process
    
    class A:
    	def __init__(self):
    		pass
    
    	def test(self):
    		def f1(x):
    			print(x)
    			
    		def f2(x):
    			print(x)
    			
    		p1 = Process(target=f1, args=(1, ))
    		p2 = Process(target=f2, args=(2, ))
    		p1.start()
    		p2.start()
    		p1.join()
    		p2.join()
    
    if __name__ == '__main__':
    	a = A()
    	a.test()
    
    • 上述代码在执行test时一定会报错(OSError有时候可能会报拒绝访问的错误, 但是前一个AttributeError是不会变的;):
    ...
    AttributeError: Can't pickle local object 'A.test.<locals>.f1'
    ...
    OSError: [WinError 87] 参数错误。
    
    • 原因其实跟必须在main函数中写创建进程, start和join是一样的; 如果把这部分代码写到与目标函数平级的位置, 本质上就和这种写法无异:
    from multiprocessing import Process
    
    def f1(x):
    	print(x)
    	
    def f2(x):
    	print(x)
    	
    p1 = Process(target=f1, args=(1, ))
    p2 = Process(target=f2, args=(2, ))
    p1.start()
    p2.start()
    p1.join()
    p2.join()
    
    • 这样写仍然会报错:
    RuntimeError:
    		An attempt has been made to start a new process before the
    		current process has finished its bootstrapping phase.
    
    		This probably means that you are not using fork to start your
    		child processes and you have forgotten to use the proper idiom
    		in the main module:
    
    			if __name__ == '__main__':
    				freeze_support()
    				...
    
    		The "freeze_support()" line can be omitted if the program
    		is not going to be frozen to produce an executable.
    
    • 改成这样即可:
    from multiprocessing import Process
    
    def f1(x):
    	print(x)
    	
    def f2(x):
    	print(x)
    
    if __name__ == '__main__':
    	p1 = Process(target=f1, args=(1, ))
    	p2 = Process(target=f2, args=(2, ))
    	p1.start()
    	p2.start()
    	p1.join()
    	p2.join()
    
    • 所以最一开始在类函数中写多进程不能将目标函数定为该类函数的子函数, 必须改写成这样:
    from multiprocessing import Process
    
    class A:
    	def __init__(self):
    		pass
    
    	def f1(self, x):
    		print(x)
    		
    	def f2(self, x):
    		print(x)
    
    	def test(self):
    		p1 = Process(target=self.f1, args=(1, ))
    		p2 = Process(target=self.f2, args=(2, ))
    		p1.start()
    		p2.start()
    		p1.join()
    		p2.join()
    
    if __name__ == '__main__':
    	a = A()
    	a.test()	
    
    • 但是这样就会发现类中会写出许多跟类无关的函数出来, 这其实会让类变得很乱很难看, 你可以考虑把f1f2移到类外, 但是这样的话它们就不能调用类属性和方法了, 所以这可能一个很难两全的事情, 其实看起来类A中多了两个莫名其妙的f1f2函数看起来是挺胃疼的;

在本文第7节的实例中你会看到相同的处理问题, 以8核CPU开16个进程为例, 分配一个进程给获取西拉代理IP的爬虫, 其余15个进程全部用来作代理多进程爬虫, 这里会涉及到两个目标函数, 笔者选择将它们写在了CSDN类中, 虽然看起来不是很整洁…



1 Process模块

Process模块就是用于定义进程的;

  1. class multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None):
  • 实例化对象: process = Process(target=f, args=(1, ));
  • 对象方法:
    • process.run(): 直接运行该进程, 即执行f(1);
    • process.start(): 进程准备就绪, 等待调度;
    • process.terminate(): 终止进程(发出SIGTERM信号);
    • process.kill(): 杀死进程(发出SIGKILL信号);
    • process.close(): 关闭进程;
      • 若该进程的当前进程存在处于运行状态的子进程时, 调用则会报错;
    • process.join(timeout=None):
      • timeoutNone, 则该方法将阻塞, 直到join()调用其方法的进程终止;
      • timeout是一个正数, 它最多会阻塞timeout秒;
      • 若方法的进程终止或方法超时, 则返回该方法;
      • 可以检查进程的process.exitcode以确定它是否终止;
      • 所谓阻塞, 就是需要等方法完全执行完毕才会让其他进程工作, 非阻塞即可以异步执行(效果上是同时执行)不同的进程;
    • process.name: 进程名称;
    • process.is_alive(): 进程是否存活;
      • start()方法返回到子进程终止的那一刻, 进程对象将处于活动状态;
    • process.daemon: 进程的守护进程标志;
      • 默认值False;
      • 必须在start()调用之前设置;
      • 若设置为True, 当进程退出时, 它会尝试终止其所有守护进程子进程;
    • process.pid: 进程ID;
    • process.exitcode: 进程的退出代码;
      • 如果进程尚未终止, 则返回None;
      • 否则返回-N, 表示进程被信号N终止;
  1. 关于process.daemon的对比说明示例:
  • 代码示例:
    import os
    import time
    from multiprocessing import Process
    
    def child():
    	print('module name: ', __name__)
    	print('parent process: ', os.getppid())
    	print('process id: ', os.getpid())
    
    def parent(name):
    	child()
    	time.sleep(3)
    	print('hello', name)
    
    if __name__ == '__main__':
    	process = Process(target=parent, args=('caoyang', ))
    	#process.daemon = True
    	print('process.daemon: ', process.daemon)
    	process.start()
    	process.join(1)
    	print('name: ', process.name)
    	print('is_alive: ', process.is_alive())
    	print('exitcode: ', process.exitcode)
    
    • 输出结果:
    process.daemon:  False
    module name:  __mp_main__
    parent process:  8896
    process id:  12480
    name:  Process-1
    is_alive:  True
    exitcode:  None
    hello caoyang
    
    • 将代码中的process.daemon = True取消注释, 则输出结果变为:
    process.daemon:  True
    module name:  __mp_main__
    parent process:  11720
    process id:  7836
    hello caoyang
    name:  Process-1
    is_alive:  False
    exitcode:  0
    
    • 可以发现如果设置守护进程, 则会终止子进程(process.exitcodeNone变为0), 由于子进程被终止, 所以print('hello', name)将无法得到执行输出;

2 Pool模块

Pool模块是用于管理进程的仓库;

  1. class multiprocessing.pool.Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])
  • 参数说明:
    • processes: 即总进程数, 理解为进程池的最大容量, 默认值为os.cpu_count();
    • initializer: 初始化器, 不用改默认None即可;
    • maxtasksperchild: 工作进程退出之前可以完成的任务数, 默认值None即进程池会无休止的工作, 来多少收多少;
    • context: 用在制定工作进程启动时的上下文; 不需要设置;
  • 实例化对象: pool = Pool(processes=16);
  • 向进程池中加入任务:
    • pool.apply(f, args=(1, )): 这是会阻塞的, 即单纯的一个接一个的执行加入到进程池中的任务;
    • pool.apply_async(f, args=(1, )): 这是非阻塞的, 即是并行执行任务, 效果上是按批运行的;
  • 将任务直接映射到进程池中:
    • pool.map(f, range(500)): 即执行f(0)f(499); 会阻塞, 即是一一运行的;
    • pool.map_async(f, range(500)): 即执行f(0)f(499); 非阻塞, 即是并行的;
  • 关闭进程池: pool.close()pool.terminate();
    • close(): 防止任何更多的任务被提交到池中, 一旦完成所有任务, 工作进程将退出;
    • terminate(): 立即停止工作进程而不完成未完成的工作; 当池对象被垃圾收集时, terminate()将立即调用;
  • 启动进程池: pool.join();
    • 启动前必须先执行pool.close()pool.terminate();
  • 代码示例:
    • 一个个添加任务:
    import os
    import time
    from multiprocessing import Process, Pool
    
    def f(n):
    	print(n)
    	time.sleep(3)
    
    if __name__=="__main__":
    	pool = Pool(processes=16)
    	for i in range(500):
    		pool.apply_async(f, args=(i, ))
    	pool.close()
    	pool.join()
    
    • 映射任务:
    import os
    import time
    from multiprocessing import Process, Pool
    
    def f(n):
    	print(n)
    	time.sleep(3)
    
    if __name__=="__main__":
    	pool = Pool(processes=16)
    	pool.map_async(f, range(500))
    	pool.close()
    	pool.join()
    
    • 运行代码可以发现一个个添加任务的话, 基本上还是会按照添加顺序执行的, 映射任务输出就变得很随机了;

3 Queue模块

Queue模块是用于存储共享数据的队列;

  1. class multiprocessing.Queue(maxsize):
  • 参数maxsize即队列的最大长度; 使用queue = Queue(100)可以生成多进程队列;
  • 常用方法:
    • queue.put(obj, block=True, timeout=None): 向队列里添加数据obj;
      • 参数block默认值True即在放入队列时是默认阻塞的, 即需要一个个地放入;
      • 参数timeout定义了阻塞最大时间, 默认值None即无穷大, 一定要等待前一个数据放入队列才能进行下一次放入;
      • 注意如果修正为非阻塞(block=False)需要预防防止队满报错;
    • queue.get(block=True, timeout=None): 读取队列中的数据, 同样默认阻塞, 参数含义与put类似;
    • queue.qsize(): 获取当前队列长度;
  • 一个简单的putget的示例:
    import os
    import time
    import random
    from multiprocessing import Process, Queue
    
    def write(q,urls):
    	print('Process({}) is writing...'.format(os.getpid()))
    	for url in urls:
    		q.put(url)
    		print('Put {} to queue...'.format(url), q.qsize())
    
    def read(q):
    	print('Process({}) is reading...'.format(os.getpid()))
    	while True:
    		url = q.get(True)
    		print('Get {} from queue.'.format(url), q.qsize())		
    		
    if __name__=='__main__':
    	q = Queue()
    	
    	writer1 = Process(target=write, args=(q, ['url1', 'url2', 'url3']))
    	writer2 = Process(target=write, args=(q, ['url4', 'url5', 'url6']))
    	
    	reader = Process(target=read, args=(q,))
    	
    	writer1.start()
    	writer2.start()
    	reader.start()
    	
    	writer1.join()
    	writer1.join()
    	
    	reader.terminate()	
    
    • 注意read()函数中编写地是一个死循环, 需要使用terminate()将进程reader强行终止;
    • 输出结果:
    Process(9776) is writing...
    Put url1 to queue...
    Process(13196) is writing...
    Put url4 to queue...
    Process(13892) is reading...
    Get url1 from queue.
    Get url4 from queue.
    Put url5 to queue...
    Get url5 from queue.
    Put url6 to queue...
    Get url6 from queue.
    Put url2 to queue...
    Get url2 from queue.
    Put url3 to queue...
    Get url3 from queue.
    

4 Pipe模块

Pipe模块是用于两个进程间通信的, 两个进程分别位于管道两端;

  1. 单向传递数据代码示例:
from multiprocessing import Process, Pipe

def send(pipe):
	pipe.send([1, 2, 3, 4, 5])
	pipe.close()

if __name__ == '__main__':
	con1, con2 = Pipe()
	sender = Process(target=send, args=(con1, ))  
	sender.start()                            
	print("con2 got: {}".format(con2.recv()))          
	con2.close()
  1. 双向同时收发数据代码示例:
from multiprocessing import Process, Pipe

def talk(pipe):
	pipe.send({'name': 'Bob', 'spam': 42})          
	reply = pipe.recv()                         
	print('talker got: {}'.format(reply))

if __name__ == '__main__':
	parentEnd, childEnd = Pipe()                 
	child = Process(target=talk, args=(childEnd, )) 
	child.start()                                  
	print('parent got: {}'.format(parentEnd.recv()))          
	parentEnd.send({x * 2 for x in 'spam'})    
	child.join()                               
	print('parent exit.')
  • 输出结果:
    parent got: {'name': 'Bob', 'spam': 42}
    talker got: {'aa', 'pp', 'mm', 'ss'}
    parent exit.
    

5 Lock模块

Lock模块本身就是自定义阻塞; 想在哪里加阻塞就在哪里添加阻塞;

  1. 不使用锁进行同步: 两个进程会不断地争夺变量, 然后可能会同时修改共享变量v;
import multiprocessing
import time

def job(v, num):
    for i in range(5):
        time.sleep(0.1)
        v.value += num 
        print(v.value, end=",")

def multicore():
    v = multiprocessing.Value('i', 0)  
    p1 = multiprocessing.Process(target=job, args=(v, 1))
    p2 = multiprocessing.Process(target=job, args=(v, 3))
    p1.start()
    p2.start()
    p1.join()
    p2.join()

if __name__ == '__main__':
    multicore()
  • 输出结果: 3, 7, 11, 15, 19, 4, 8, 12, 16, 20,;
  • 按道理可能还是应该要么+3, 要么+1, 但是会发现变量可能会被疯狂乱加, 然后乱七八糟;
  1. 使用锁进行同步:
import multiprocessing
import time
# lock = multiprocessing.Lock()
lock = multiprocessing.RLock()
def job(v, num,lock):
    lock.acquire()
    for _ in range(5):
        time.sleep(0.1)
        v.value += num 
        print(v.value, end=", ")
    lock.release()

def multicore():
    v = multiprocessing.Value('i', 0) 
    p1 = multiprocessing.Process(target=job, args=(v, 1, lock))
    p2 = multiprocessing.Process(target=job, args=(v, 3, lock)) 
    p1.start()
    p2.start()
    p1.join()
    p2.join()

if __name__ == '__main__':
	multicore()
  • 输出结果: 1, 2, 3, 4, 5, 8, 11, 14, 17, 20,
  1. LockRLock的区别:
  • 前者必须release后才能再次acquire; 如下面的代码时不可行的, 会产生死锁:
    lock.acquire()
    lock.acquire() # deadlock
    lock.release()
    lock.release()
    
  • 后者可以连续acquire, 然后再依次release, 只要两者数量相等即可; 即上述形式的代码时可行的;

6 Manager模块

Manager模块主要是封装了更多类型的进程共享数据, 最常用的就是listdict, 其实差不多也就这两个能用;
注意实例化Manager类的对象时一定要在main()函数中进行, 否则会报RuntimeError;

  1. dict为例给个简单的代码示例, list完全就照搬就行了:
import time
from multiprocessing import Process, Manager

def f(mdict, key, value):
	mdict[key] = value
 
if __name__ == '__main__':
	manager = Manager()
	mdict = manager.dict()
	processes = [Process(target=f, args=(mdict, i, i**2)) for i in range(10)]
	for processe in processes:
		processe.start()
	for processe in processes:
		processe.join()
	print ('Results: ')
	for key, value in dict(mdict).items():
		print("{}: {}".format(key, value))
  • 输出结果:
    Results:
    1: 1
    0: 0
    2: 4
    3: 9
    4: 16
    5: 25
    6: 36
    7: 49
    9: 81
    8: 64
    

7 一个完整的多进程爬虫项目示例

  1. proxy.py
# -*- coding: UTF-8 -*-
# @author: caoyang
# @email: caoyang@163.sufe.edu.cn

import math
import pandas
import requests

from bs4 import BeautifulSoup

class XiLaProxy(object):
	"""
	http://www.xiladaili.com/
	"""
	def __init__(self) -> None:
		
		self.index_url = 'http://www.xiladaili.com'
		self.total_proxy_per_page = 50									 # There are exactly 50 proxies on one page. Please modifiy the number if the page source changes in the future.		
		self.proxy_list_urls = {
			'gaoni': self.index_url + '/gaoni',
			'https': self.index_url + '/https',
			'http': self.index_url + '/http',
		}
		self.headers = {												 # Request headers.
			'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:82.0) Gecko/20100101 Firefox/82.0',
		}

	def get_proxy_table(self, proxy_type: str='https', total: str=50, export_path: str=None) -> list:
		"""
		Request for the proxy table on xiladaili website.
		You can call ```table_df.values[:, 0].tolist()```to get the proxy list.
		
		:param proxy_type: range from values {'gaoni', 'https', 'http'}.
		:param total: total number of ip needed.
		:param export_path: export IP table to CSV file. 
		:return table_df: proxy table as the type of ```pandas.DataFrame```.
		"""
		assert proxy_type in self.proxy_list_urls
		total_page = math.ceil(total / self.total_proxy_per_page)
		proxy_list_url = self.proxy_list_urls.get(proxy_type)
		
		def _get_proxy_table(url, table_dict):
			while True:
				try: 
					response = requests.get(url, headers=self.headers, timeout=30)
					break
				except Exception as e: 
					print('Fail to connect {} ...'.format(url))
					print(e)
					continue
			html = response.text
			soup = BeautifulSoup(html, 'lxml')
			table = soup.find('table', class_='fl-table')	
			if table_dict is None:
				table_dict = {}
				for th in table.find('thead').find_all('th'):
					table_dict[str(th.string)] = []
			for tr in table.find('tbody').find_all('tr'):
				for td, column in zip(tr.find_all('td'), table_dict):
					table_dict[column].append(str(td.string))
			return table_dict
		
		table_dict = None
		for page in range(1, total_page+1):
			print('Fetch proxies on page {}'.format(page))
			if page==1: 
				table_dict = _get_proxy_table(proxy_list_url, table_dict)
			else: 
				table_dict = _get_proxy_table(proxy_list_url + '/{}'.format(page), table_dict)
			print('  - There are total {} proxies.'.format(len(table_dict[list(table_dict.keys())[0]])))
		table_df = pandas.DataFrame(table_dict, columns=list(table_dict.keys()))
		if export_path is not None:
			table_df.to_csv(export_path, header=True, index=False, sep='\t')
		return table_df
	
		
if __name__ == '__main__':
	
	xila = XiLaProxy()
	
	#gaoni_df = xila.get_proxy_table(proxy_type='gaoni', export_path='gaoni.csv')
	https_df = xila.get_proxy_table(proxy_type='https', export_path='https.csv')
	#http_df = xila.get_proxy_table(proxy_type='http', export_path='http.csv')
	
	print(gaoni_df.values[:, 0].tolist())

  1. csdn.py:
  • read_article是非多进程的;
  • read_article_with_proxies是多进程的;
  • _put_proxies_queue和_read_article_with_proxies是两个多进程的目标函数;
  • 主要是对Queue的方法的一个应用; 目前测试下来非常稳定;
  • 附一张运行截图: 基本上一分钟十多次是没有什么问题的;Figure1
# -*- coding: UTF-8 -*-
# @author: caoyang
# @email: caoyang@163.sufe.edu.cn

import os
import sys

sys.path.append(os.path.dirname(os.getcwd()))

import re
import time
import requests
from functools import wraps
from bs4 import BeautifulSoup
from multiprocessing import Process, Pool, Queue, Lock

from proxy import XiLaProxy

class CSDN(object):

	def __init__(self) -> None:

		self.headers = {												 # Request headers.
			'Host': 'blog.csdn.net',
			'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:82.0) Gecko/20100101 Firefox/82.0',
			'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
			'Accept-Language': 'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2',
			'Accept-Encoding': 'gzip, deflate, br',
			'Referer': 'https://blog.csdn.net/baidu_39633459',
			'Connection': 'keep-alive',
			# 'Cookie': 'Your Cookies', # 20201217备注: 最近发现不带cookie也可行,想带可以自己加上
			'Upgrade-Insecure-Requests': '1',
			'Cache-Control': 'max-age=0',
			'TE': 'Trailers',
		}
		self.article_ids = [ # 你可以自行添加一些文章ID进来,这里只放了一篇文章
			'110294311',
		]
		assert self.article_ids											 # It should not be an empty list.
		self.article_url = 'https://blog.csdn.net/baidu_39633459/article/details/{}'.format		# url可以改成你自己的,不过这个也不是我的... 我找了位朋友的测试了一下

		
		
	
	def read_article(self, proxy: str=None, start_article_id: int=0, end_article_id: int=-1, with_cookie: bool=True, early_stop: bool=True, early_stop_point: int=95, max_read_count: int=10000, regular_interval: int=75, reset_interval: int=300) -> None:
		"""
		A simple crawler used to increase pageview of several articles.
		
		:param proxy: IP address of proxy server, default None means localhost. 
		:param start_article_id: Start index in ```self.article_ids```. 
		:param end_article_id: End index in ```self.article_ids```. 
		:param with_cookie: Whether to use cookie in crawler.
		:param early_stop: Whether to stop before whole hundred(count for bonus).
		:param early_stop_point: Early stop at ```pageview%100 == early_stop_point```, default 95.
		:param max_read_count: Required upper bound of pageview, default 10000.
		:param regular_interval: Sleep interval of seconds between two successive requests, default 75.
		:param reset_interval: Sleep interval of seconds when occuring request exception, default 300.
		"""
		headers = self.headers.copy()
		if not with_cookie: 
			headers.pop('Cookie')
		if early_stop:
			early_stop_point = early_stop_point % 100
		article_ids = self.article_ids[start_article_id:] if end_article_id == -1 else self.article_ids[start_article_id:end_article_id+1]
		compiler = re.compile('\d+')									 # An regular expression compiler used to parse digital data.
		previous_read_counts = [None] * len(article_ids)				 # A list used to save current page view of each article.
		count = 0
		while True:
			if not article_ids:											 # If it is an empty list, then break the loop and return.
				break
			try: 
				start_time = time.time()
				count += 1
				print('Pid: {} - Count: {} - '.format(os.getpid(), str(count).zfill(3)), end='')
				for i, article_id in enumerate(article_ids):
					if proxy is None:
						response = requests.get(self.article_url(article_id), headers=self.headers, timeout=30)
					else: 
						try:
							response = requests.get(self.article_url(article_id), headers=self.headers, proxies={'https': 'https://{}'.format(proxy)}, timeout=30)
						except: 
							print('Proxy {} cannot be used ...'.format(proxy))
							return False
					html = response.text
					soup = BeautifulSoup(html, 'lxml')
					span = soup.find('span', class_='read-count')
					span_string = str(span.string)
					print(span_string, end='')
					read_count = int(compiler.findall(span_string)[0])
					if previous_read_counts[i] is None:
						print('(..)', end='\t')
						previous_read_counts[i] = read_count
					else:
						read_increment = read_count - previous_read_counts[i]
						if read_increment == 0:
							print('(!!)', end='\t')
						elif read_increment == 1:
							print('(..)', end='\t')
						elif read_increment > 1:
							print('(+{})'.format(read_increment), end='\t')
						else:
							print('(??)', end='\t')
						previous_read_counts[i] = read_count		
				div = soup.find('div', id='asideProfile')
				dls = div.find_all('dl', class_='text-center')
				for dl in dls:											 # Parse blog profile data such as 'like', 'favorite', 'followers'.
					try:
						print(int(dl.attrs['title']), end=',')
					except:
						continue
				if proxy is not None: 
					print(proxy, end=',')
				print(time.strftime('%Y-%m-%d %H:%M:%S'))
				if early_stop:											 # Do early stopping.
					index = -1
					for article_id, previous_read_count in zip(article_ids[:], previous_read_counts[:]):
						index += 1
						if previous_read_count % 100 >= early_stop_point or previous_read_count>=10000: 
							previous_read_counts.pop(index)
							article_ids.pop(index)
							index -= 1
				end_time = time.time()
				consumed_time = end_time - start_time
				if consumed_time < regular_interval:
					time.sleep(regular_interval - consumed_time)
			except Exception as exception:
				print(exception)
				time.sleep(reset_interval)

	def read_article_with_proxies(self, total_processes=15, start_article_id: int=0, end_article_id: int=-1, with_cookie: bool=True, early_stop: bool=True, early_stop_point: int=95, max_read_count: int=10000, regular_interval: int=75, reset_interval: int=300) -> None:
		"""
		A multiprocessing crawler used to increase pageview of several articles.
		Note that if :param ip_list: is None, then ```read_article```will be called instead.
	
		:param total_processes: total number of multiprocesses.
		:param start_article_id: Start index in ```self.article_ids```. 
		:param end_article_id: End index in ```self.article_ids```. 
		:param with_cookie: Whether to use cookie in crawler.
		:param early_stop: Whether to stop before whole hundred(count for bonus).
		:param early_stop_point: Early stop at ```pageview%100 == early_stop_point```, default 95.
		:param max_read_count: Required upper bound of pageview, default 10000.
		:param regular_interval: Sleep interval of seconds between two successive requests, default 75.
		:param reset_interval: Sleep interval of seconds when occuring request exception, default 300.
		"""
		xila = XiLaProxy()
		queue = Queue()
		proxy_table = xila.get_proxy_table(proxy_type='https', total=50, export_path=None)
		proxies = proxy_table.values[:, 0].tolist()
		print('Total {} proxies, list as below: '.format(len(proxies)))
		print(proxies)
		
		for proxy in proxies:
			queue.put(proxy)	
		
		params = {
			'queue': queue,
			'start_article_id': start_article_id,
			'end_article_id': end_article_id,
			'with_cookie': with_cookie,
			'early_stop': early_stop,
			'early_stop_point': early_stop_point,
			'max_read_count': max_read_count,
			'regular_interval': regular_interval,
			'reset_interval': reset_interval,
		}

		processes = [Process(target=self._read_article_with_proxies, kwargs=params) for i in range(total_processes)]
		processes.append(Process(target=self._put_proxies_queue, args=(queue, total_processes, 30, 50, )))
				
		for process in processes:
			process.start()
		for process in processes:
			process.join()

		time.sleep(1000)
		for process in processes:
			process.terminate()
		
	def _put_proxies_queue(self, queue: Queue, min_queue_size: int=15, check_interval: int=30, batch_size: int=50) -> None:
		"""
		Target function for multiprocessing script ```read_article_with_proxies()```.
		"""
		xila = XiLaProxy()
		while True:
			_queue_size = queue.qsize()
			if _queue_size < min_queue_size:
				print('Queue size is {}, which is lower than than {} ...'.format(_queue_size, min_queue_size))
				print('  - Fetching a batch of proxies ...')
				_proxy_table = xila.get_proxy_table(proxy_type='https', total=batch_size, export_path=None)
				_proxies = _proxy_table.values[:, 0].tolist()
				print('  - Successfully fetch a batch proxies of {}.'.format(len(_proxies)))
				for _proxy in _proxies:
					queue.put(_proxy)
				print('Queue size is refreshed to {}.'.format(queue.qsize()))
			time.sleep(check_interval)
	

	def _read_article_with_proxies(self, queue: Queue, start_article_id: int=0, end_article_id: int=-1, with_cookie: bool=True, early_stop: bool=True, early_stop_point: int=95, max_read_count: int=10000, regular_interval: int=75, reset_interval: int=300) -> None:
		"""
		Target function for multiprocessing script ```read_article_with_proxies()```.
		"""
		while True:
			_proxy = queue.get()
			self.read_article(
				proxy=_proxy,
				start_article_id=start_article_id,
				end_article_id=end_article_id,
				with_cookie=with_cookie,
				early_stop=early_stop,
				early_stop_point=early_stop_point,
				max_read_count=max_read_count,
				regular_interval=regular_interval,
				reset_interval=reset_interval,
			)
		
if __name__ == '__main__':

	csdn = CSDN()

	#csdn.read_article(early_stop_point=60, early_stop=True)
	#https_df = xila.get_proxy_table(proxy_type='https', export_path='https.csv')
	
	csdn.read_article_with_proxies(total_processes=15, early_stop=False)
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页